Run Coordinator: Gregory Marr

Run-17 Au+Au Review Run-18 Zr+Zr, Ru+Ru Plans

Run-17 Overview: Au+Au Performance

- At CeC energy: 27.2 GeV
- No stochastic cooling
- We were able to meet our projected luminosity performance goals.

Run-17 Overview: Au+Au Challenges

- Start-up: consecutive failures
 - 5/30-6/3/17: Equal time failure, machine setup:
 - BMMPS
 - A5 kicker delay module (multiple times)
 - Booster RF driver amplifier (multiple times)
 - AGS RF station tuning
 - RHIC smoke detector
 - BTA vacuum interlocks
 - Cryo lead flow
 - RHIC RF storage cavities
 - Yellow dipole feedback memory issue
 - EBIS trips
 - RHIC Landau cavity trips

- Landau cavity stability
 - Good news: largely solved
- Unsolved issues
 - Yellow debunching at injection
 - Yellow Booster noise at injection & store
 - Blue ramp tune feedback issues
- Multiple species changes in Collider
 - Somewhat more automated this run
 - Seemed fraught with random failures
- Limited transmission efficiency.
 - Not on par with Run 16, considering beam intensity.

Blue ramp: tune issues

Anomalous peaks in BBQ tune caused lock issues and ramps failed when tune feedback ran away.

Target tunes were same as previous runs, but had to be changed (+0.004) to avoid this.

Cause was never identified.

Yellow noise, losses

Yellow loss rates increase when Booster Main Magnet is pulsing. Blue beam did not see similar effect.

We were unable to find a cause or tune around the effect.

Yellow injection: debunching

At injection, Yellow beam was debunching more quickly than Blue.

Rate was worse this run compared to Run-16 Au.

Run-17 Coordination Notes: CeC

- It's not an experiment. It's not an operational system either.
 - We struggle to manage this third category at the outset (e.g. elens, 56MHz, etc.). It gets better with time. Time remains a limited resource, however.
 - Lives at the perimeter of Run Coordinator and Scheduling Physicist's purview.
- They often couldn't specify what their needs were or when they wanted them. Not unusual for a developing project, but it was difficult to anticipate and schedule.
- Did CeC make the most efficient use of their time?
 - I don't think we (Operations) helped them improve. Could we have been of greater service?
 - I'm not sure CeC staff knew the extent of our tools/expertise, or knew to ask questions (ask the right questions).
 - With STAR ahead of some goals, would dedicated beam time have been appropriate?

Run-18 Planning: Zr+Zr, Ru+Ru

- Ramp/Lattice
 - Beam energy 100 GeV/N, ($\sqrt{s_{NN}}=200$ GeV)
 - Stochastic cooling
 - Do we need β * < 1m?
 - Likely determined by Ru achievable luminosity...
 - No less than o.7m
- Equal lattice/beam conditions desired for Zr, Ru

More (even more?) mode switches

- Warning: species switches = less integrated luminosity.
 - CeC will require periods of Au-Au
 - As presently scheduled, we must switch the Collider species more than any species or energy change in any past run.
 - (Au?)->Zr->Au->Zr->Ru->Au->Ru->Au->low energy Au
- Mode switching in the injectors is commonplace. Is it time to make it so in RHIC?
 - Additional setup effort and time required.
- Tandem will need to change schedule to provide Ru at beginning of run.
- Zr not compatible with NSRL running (EBIS LION issues)?

Run-18 Challenges: Intensity

- Source limited. Will tuning time be limited due to availability of enriched source material?
 - See following talk (Raparia).
 - Should we set up with Au in beginning?
- Previously achieved (courtesy Gardner, Kling)
 - Zr: ~5x10⁶ 9⁶Zr¹⁶⁺ transported through Booster (with ⁹⁰Zr¹⁵⁺) to NSRL line target with naturally abundant (~2-3%) Zr source
 - Ru: ~1x109 96Ru44+ ions/bunch at AGS extraction (from Tandem) with naturally abundant (~5.5%) Ru source and 8-4-2 merge in injectors
- Projected
 - Zr: Enriched source should provide more ions than Ruthenium, approaching Gold-like intensities (2x109 or better).
 - 12 EBIS/Booster cycles, 6-3-1 merge in AGS
 - Ru: Estimate ~1.5x109 ions/bunch available
 - 8 Tandem/Booster pulses, 8-4-2 merge in AGS

Run-18 Planning: Challenges

- Zr yet to be transported to/accelerated in AGS
 - Biggest hurdle will be selecting proper isotope & charge state in BTA downstream of stripping foil.
- Machine/experiment protection
 - This storage $B\rho$ could be susceptible to prefires.
 - See previous talk (Drees).
- Concurrent project commissioning
 - LEReC and CeC: only one at a time? (cryo).
 - You can't start beam while you finish installations...
 - If access is already predicted to be more frequent, it behooves us to make it more streamlined than the present awkward circus. Fugit inreparabile tempus.

Run-18 Planning: Au-Au

- Medium Energy for STAR
 - Beam Energy 13.5 GeV ($\sqrt{s_{NN}} = 27$ GeV)
 - Below transition
 - β * = 3m?
 - Previously set up in Run-11, 8 day run
 - Used "IBS suppression lattice" Au11v6
 - ~1 hour stores
 - No stochastic cooling
- Au for CeC
 - Uses previously established Au17 ramp
 - Low intensity, bunch number

Run-18 Planning: Low energy Au

- Fixed target at STAR
- Beam energy 3.85 GeV
- Can this be done with CeC beampipe? It won't be as easy as last time.
- Run-10: It wasn't easy last time.
 - 49 hours setup
 - Sextupole polarity reversal
 - 6m β* at IP6
 - h=369
 - 10 min stores
 - Broke the vacuum at the yellow injection kicker
 - Intensity 0.5x109/bunch, loss-limited in ATR.

Summary

- The Run-17 heavy ion program was a successful, albeit short, run.
- The short program did not afford us much time to investigate or address a number of issues that appeared during the run. We should be prepared for their possible recurrence in Run-18.
- Run-18 will be challenged with numerous species changes. Efficient use of setup time will be important.
- My thanks to Operations, CAS and all support groups and specialists for their effort in Run-17, and for their upcoming work towards a successful Run-18.